
Flask-Principal Documentation
Release 0.3.5

Matt Wright

May 22, 2017

Contents

1 Introduction 3

2 Links 5

3 Protecting access to resources 7

4 Authentication providers 9

5 User Information providers 11

6 Granular Resource Protection 13

7 API 15
7.1 Starting the extension . 15
7.2 Main Types . 15
7.3 Predefined Need Types . 15
7.4 Signals . 15

8 Changelog 17
8.1 Flask-Principal Changelog . 17

9 Indices and tables 19

i

ii

Flask-Principal Documentation, Release 0.3.5

“I am that I am”

Contents 1

Flask-Principal Documentation, Release 0.3.5

2 Contents

CHAPTER 1

Introduction

Flask-Principal provides a very loose framework to tie in providers of two types of service, often located in different
parts of a web application:

1. Authentication providers

2. User information providers

For example, an authentication provider may be oauth, using Flask-OAuth and the user information may be stored in
a relational database. Looseness of the framework is provided by using signals as the interface.

The major components are the Identity, Needs, Permission, and the IdentityContext.

1. The Identity represents the user, and is stored/loaded from various locations (eg session) for each request. The
Identity is the user’s avatar to the system. It contains the access rights that the user has.

2. A Need is the smallest grain of access control, and represents a specific parameter for the situation. For example
“has the admin role”, “can edit blog posts”.

Needs are any tuple, or probably could be object you like, but a tuple fits perfectly. The predesigned Need types
(for saving your typing) are either pairs of (method, value) where method is used to specify common things
such as “role”, “user”, etc. And the value is the value. An example of such is (‘role’, ‘admin’). Which would
be a Need for a admin role. Or Triples for use-cases such as “The permission to edit a particular instance of an
object or row”, which might be represented as the triple (‘article’, ‘edit’, 46), where 46 is the key/ID for that
row/object.

Essentially, how and what Needs are is very much down to the user, and is designed loosely so that any effect
can be achieved by using custom instances as Needs.

Whilst a Need is a permission to access a resource, an Identity should provide a set of Needs that it has access
to.

3. A Permission is a set of requirements, any of which should be present for access to a resource.

4. An IdentityContext is the context of a certain identity against a certain Permission. It can be used as a context
manager, or a decorator.

3

Flask-Principal Documentation, Release 0.3.5

Identity

Needs

RoleNeed ActionNeed

Permission

IdentityContext

4 Chapter 1. Introduction

CHAPTER 2

Links

• documentation

• source

• changelog

5

http://packages.python.org/Flask-Principal/
http://github.com/mattupstate/flask-principal

Flask-Principal Documentation, Release 0.3.5

6 Chapter 2. Links

CHAPTER 3

Protecting access to resources

For users of Flask-Principal (not authentication providers), access restriction is easy to define as both a decorator and
a context manager. A simple quickstart example is presented with commenting:

from flask import Flask, Response
from flask.ext.principal import Principal, Permission, RoleNeed

app = Flask(__name__)

load the extension
principals = Principal(app)

Create a permission with a single Need, in this case a RoleNeed.
admin_permission = Permission(RoleNeed('admin'))

protect a view with a principal for that need
@app.route('/admin')
@admin_permission.require()
def do_admin_index():

return Response('Only if you are an admin')

this time protect with a context manager
@app.route('/articles')
def do_articles():

with admin_permission.require():
return Response('Only if you are admin')

7

Flask-Principal Documentation, Release 0.3.5

8 Chapter 3. Protecting access to resources

CHAPTER 4

Authentication providers

Authentication providers should use the identity-changed signal to indicate that a request has been authenticated. For
example, the following code is a hypothetical example of how one might combine the popular Flask-Login extension
with Flask-Principal:

from flask import Flask, current_app, request, session
from flask.ext.login import LoginManager, login_user, logout_user, \

login_required, current_user
from flask.ext.wtf import Form, TextField, PasswordField, Required, Email
from flask.ext.principal import Principal, Identity, AnonymousIdentity, \

identity_changed

app = Flask(__name__)

Principal(app)

login_manager = LoginManager(app)

@login_manager.user_loader
def load_user(userid):

Return an instance of the User model
return datastore.find_user(id=userid)

class LoginForm(Form):
email = TextField()
password = PasswordField()

@app.route('/login', methods=['GET', 'POST'])
def login():

A hypothetical login form that uses Flask-WTF
form = LoginForm()

Validate form input
if form.validate_on_submit():

Retrieve the user from the hypothetical datastore
user = datastore.find_user(email=form.email.data)

9

http://packages.python.org/Flask-Login/

Flask-Principal Documentation, Release 0.3.5

Compare passwords (use password hashing production)
if form.password.data == user.password:

Keep the user info in the session using Flask-Login
login_user(user)

Tell Flask-Principal the identity changed
identity_changed.send(current_app._get_current_object(),

identity=Identity(user.id))

return redirect(request.args.get('next') or '/')

return render_template('login.html', form=form)

@app.route('/logout')
@login_required
def logout():

Remove the user information from the session
logout_user()

Remove session keys set by Flask-Principal
for key in ('identity.name', 'identity.auth_type'):

session.pop(key, None)

Tell Flask-Principal the user is anonymous
identity_changed.send(current_app._get_current_object(),

identity=AnonymousIdentity())

return redirect(request.args.get('next') or '/')

10 Chapter 4. Authentication providers

CHAPTER 5

User Information providers

User information providers should connect to the identity-loaded signal to add any additional information to the Iden-
tity instance such as roles. The following is another hypothetical example using Flask-Login and could be combined
with the previous example. It shows how one might use a role based permission scheme:

from flask.ext.login import current_user
from flask.ext.principal import identity_loaded, RoleNeed, UserNeed

@identity_loaded.connect_via(app)
def on_identity_loaded(sender, identity):

Set the identity user object
identity.user = current_user

Add the UserNeed to the identity
if hasattr(current_user, 'id'):

identity.provides.add(UserNeed(current_user.id))

Assuming the User model has a list of roles, update the
identity with the roles that the user provides
if hasattr(current_user, 'roles'):

for role in current_user.roles:
identity.provides.add(RoleNeed(role.name))

11

Flask-Principal Documentation, Release 0.3.5

12 Chapter 5. User Information providers

CHAPTER 6

Granular Resource Protection

Now lets say, for example, you only want the author of a blog post to be able to edit said article. This can be achieved
by creating the necessary Need and Permission objects, and adding more logic into the identity_loaded signal handler.
For example:

from collections import namedtuple
from functools import partial

from flask.ext.login import current_user
from flask.ext.principal import identity_loaded, Permission, RoleNeed, \

UserNeed

BlogPostNeed = namedtuple('blog_post', ['method', 'value'])
EditBlogPostNeed = partial(BlogPostNeed, 'edit')

class EditBlogPostPermission(Permission):
def __init__(self, post_id):

need = EditBlogPostNeed(unicode(post_id))
super(EditBlogPostPermission, self).__init__(need)

@identity_loaded.connect_via(app)
def on_identity_loaded(sender, identity):

Set the identity user object
identity.user = current_user

Add the UserNeed to the identity
if hasattr(current_user, 'id'):

identity.provides.add(UserNeed(current_user.id))

Assuming the User model has a list of roles, update the
identity with the roles that the user provides
if hasattr(current_user, 'roles'):

for role in current_user.roles:
identity.provides.add(RoleNeed(role.name))

Assuming the User model has a list of posts the user

13

Flask-Principal Documentation, Release 0.3.5

has authored, add the needs to the identity
if hasattr(current_user, 'posts'):

for post in current_user.posts:
identity.provides.add(EditBlogPostNeed(unicode(post.id)))

The next step will be to protect the endpoint that allows a user to edit an article. This is done by creating a permission
object on the fly using the ID of the resource, in this case the blog post:

@app.route('/posts/<post_id>', methods=['PUT', 'PATCH'])
def edit_post(post_id):

permission = EditBlogPostPermission(post_id)

if permission.can():
Save the edits ...
return render_template('edit_post.html')

abort(403) # HTTP Forbidden

14 Chapter 6. Granular Resource Protection

CHAPTER 7

API

Starting the extension

Main Types

Predefined Need Types

Signals

identity_changed
Signal sent when the identity for a request has been changed.

identity_loaded
Signal sent when the identity has been initialised for a request.

15

Flask-Principal Documentation, Release 0.3.5

16 Chapter 7. API

CHAPTER 8

Changelog

Flask-Principal Changelog

Here you can see the full list of changes between each Flask-Principal release.

Version 0.4.0

Not released yet

• Added Python 3 support

• Dropped support for Python 2.5

Version 0.3.5

Released April 3rd 2013

• Fixed possible bug with AnonymousIdentity supplying “anon” as the username

• Changed Indentity name property to id to be more generic

Version 0.3.4

Released February 1st 2013

• Add __repr__ method to Identity and Permission classes

• Optimized _is_static_resource method

17

Flask-Principal Documentation, Release 0.3.5

Version 0.3.3

Released September 4th 2012

• Add init_app method to accomodate usage with a factory pattern.

Version 0.3.2

Released August 25th 2012

• Update to check for static_url_path in Flask 0.9

Version 0.3.1

Released August 16th 2012

• Fixed bug with re-raising exceptions/tracebacks

Version 0.3

Released June 20th 2012

• Python 2.5/GAE support

• New extension structure

• Added ignore_static option

• Updated docs

Version 0.2

Initial development by Ali Asfshar. Original repository

18 Chapter 8. Changelog

https://bitbucket.org/aafshar/flask-principal-main

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

19

Flask-Principal Documentation, Release 0.3.5

20 Chapter 9. Indices and tables

Index

I
identity_changed (built-in variable), 15
identity_loaded (built-in variable), 15

21

	Introduction
	Links
	Protecting access to resources
	Authentication providers
	User Information providers
	Granular Resource Protection
	API
	Starting the extension
	Main Types
	Predefined Need Types
	Signals

	Changelog
	Flask-Principal Changelog

	Indices and tables

